Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Plant Physiol Biochem ; 207: 108326, 2024 Feb.
Article En | MEDLINE | ID: mdl-38237421

Understanding how to adapt outdoor cultures of Nannochloropsis oceanica to high light (HL) is vital for boosting productivity. The N. oceanica RB2 mutant, obtained via ethyl methanesulfonate mutagenesis, was chosen for its tolerance to Rose Bengal (RB), a singlet oxygen (1O2) generator. Compared to the wild type (WT), the RB2 mutant showed higher resilience to excess light conditions. Analyzing the ascorbate-glutathione cycle (AGC), involving ascorbate peroxidases (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.8.1.7), in the RB2 mutant under HL stress provided valuable insights. At 250 µmol photon m-2 s-1 (HL), the WT strain displayed superoxide anion radicals (O2▪-) and hydrogen peroxide (H2O2) accumulation, increased lipid peroxidation, and cell death compared to normal light (NL) conditions (50 µmol photon m-2 s-1). The RB2 mutant didn't accumulate O2▪- and H2O2 after HL exposure, and exhibited increased APX, DHAR, and GR activities and transcript levels compared to WT and remained consistent after HL treatment. Although the RB2 mutant had a smaller ascorbate (AsA) pool than the WT, its ability to regenerate dehydroascorbate (DHA) increased post HL exposure, indicated by a higher AsA/DHA ratio. Additionally, under HL conditions, the RB2 mutant displayed an improved glutathione (GSH) regeneration rate (GSH/GSSG ratio) without changing the GSH pool size. Remarkably, H2O2 or menadione (a O2▪- donor) treatment induced cell death in the WT strain but not in the RB2 mutant. These findings emphasize the essential role of AGC in the RB2 mutant of Nannochloropsis in handling photo-oxidative stress.


Hydrogen Peroxide , Rose Bengal , Hydrogen Peroxide/metabolism , Ascorbic Acid/metabolism , Antioxidants/metabolism , Glutathione Reductase/metabolism , Oxidative Stress , Glutathione/metabolism , Acclimatization , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism
2.
Photochem Photobiol Sci ; 21(12): 2205-2215, 2022 Dec.
Article En | MEDLINE | ID: mdl-36074327

The photosynthetic apparatus is a major reactive oxygen species (ROS) proliferator, especially in high-light environments. The role of ROS in photoinhibition and photoacclimation mechanisms has been extensively explored, primarily in model plant species. However, little work has been performed on the topic in non-Archaeplastida organisms, such as the model heterokont species Nannochloropsis oceanica. To investigate the photoacclimation and damaging impact of singlet oxygen and superoxide anions on the photosynthetic apparatus of N. oceanica, we subjected cells to two doses of methyl viologen and rose bengal. Significant findings: Rose bengal (a singlet-oxygen photosensitizer) induced changes to the photosynthetic apparatus and PSII photochemistry mirroring high-light-acclimated cells, suggesting that singlet-oxygen signaling plays a role in the high-light acclimation of PSII. We further suggest that this singlet-oxygen pathway is mediated outside the plastid, given that rose bengal caused no detectable damage to the photosynthetic apparatus. Methyl viologen (a superoxide-anion sensitizer) induced an enhanced non-photochemical quenching response, similar to what occurs in high-light-acclimated cells. We propose that superoxide anions produced inside the plastid help regulate the high-light acclimation of photoprotective pathways.


Photosystem II Protein Complex , Rose Bengal , Rose Bengal/pharmacology , Paraquat , Photochemistry , Oxygen
3.
Plant Cell Physiol ; 62(9): 1478-1493, 2021 Nov 17.
Article En | MEDLINE | ID: mdl-34180533

A barrier to realizing Nannochloropsis oceanica's potential for omega-3 eicosapentaenoic acid (EPA) production is the disparity between conditions that are optimal for growth and those that are optimal for EPA biomass content. A case in point is temperature: higher content of polyunsaturated fatty acid, and especially EPA, is observed in low-temperature (LT) environments, where growth rates are often inhibited. We hypothesized that mutant strains of N. oceanica resistant to the singlet-oxygen photosensitizer Rose Bengal (RB) would withstand the oxidative stress conditions that prevail in the combined stressful environment of high light (HL; 250 µmol photons m-2 s-1) and LT (18°C). This growth environment caused the wild-type (WT) strain to experience a spike in lipid peroxidation and an inability to proliferate, whereas growth and homeostatic reactive oxygen species levels were observed in the mutant strains. We suggest that the mutant strains' success in this environment can be attributed to their truncated photosystem II antennas and their increased ability to diffuse energy in those antennas as heat (non-photosynthetic quenching). As a result, the mutant strains produced upward of four times more EPA than the WT strain in this HL-LT environment. The major plastidial lipid monogalactosyldiacylglycerol was a likely target for oxidative damage, contributing to the photosynthetic inhibition of the WT strain. A mutation in the NO10G01010.1 gene, causing a subunit of the 2-oxoisovalerate dehydrogenase E1 protein to become non-functional, was determined to be the likely source of tolerance in the RB113 mutant strain.


Acclimatization , Cold Temperature , Light , Mutation , Stramenopiles/physiology , Rose Bengal/metabolism , Stramenopiles/genetics
...